
Adding Source Code Searching

Capability to Yioop

Advisor - Dr Chris Pollett

Committee Members – Dr Sami Khuri and Dr Teng Moh

Presented by

Snigdha Rao Parvatneni

AGENDA

 Introduction

 Preliminary work

 Git Clone effects in Yioop

 Source Code Searching Techniques

 Logarithmic Char-gramming

 Suffix tree

 Comparing both the techniques in Yioop

 Conclusion

INTRODUCTION

 Code search enables users to search open source code.

 Code snippets can be used as a query string.

 Source code search helps users in finding specific implementations over

large collection source code in open source repositories.

 Some examples of available code search engines are Ohloh, Google code,

Krugle etc.

 This project aims to implement Java and Python source code search in

Yioop, using publically crawlable Git repositories.

TECHNIQUES FOR CODE SEARCH

 Two approaches of code search experimented in Yioop are:

 Logarithmic Char-Gramming

 Suffix Tree

 The logarithmic char-gramming technique was new to Yioop. A native

approach of calculating character n-grams is available in Yioop.

 A suffix tree implementation was already present in Yioop and was

extended for source code search.

 Famous Git hosting web servers like GitHub, Gitorious, etc., are not

publically crawlable and hence cannot be ethically used.

PRELIMINARY WORK

 Individual components of code search were separately implemented to get

an overall idea about an actual implementation of the feature in Yioop.

 Proof of concept was developed for

 Naïve Bayes classifier – to programmatically detect the language of a

query string.

 Git cloning effect – to clone a Git repository without using the Git

clone command or any other external utilities

 The proof of concepts were created using PHP and experiments were

conducted to better understand the concepts.

NAÏVE BAYES CLASSIFIER

 A Naïve Bayes classifier was implemented to detect the language of a

query string.

 In the classifier, Java and Python programming languages are treated as

hypotheses.

 The classifier’s training set consists of Java and Python source code in a

document representation, where each document is separated by ‘\n\n’.

 Source code were chunked into trigrams and the initial probabilities of

hypotheses were calculated.

NAÏVE BAYES CLASSIFIER CONTD…

 To calculate the probability of an unknown trigram random Java and

Python documents were taken.

 The probability of unknown trigrams were calculated by dividing the

number of new trigrams in a random document by the total number of

trigrams in a random document.

 Probabilities of trigrams are smooth by multiplying the initial probabilities

of trigrams by one minus the probability of an unknown trigram.

NAÏVE BAYES CLASSIFIER CONTD…

 The probability of hypothesis is calculated by dividing the total number of

search results of each hypothesis by the total number of search results of

both the hypotheses.

 A query string is chunked into trigrams.

 The final probability of a query is obtained by multiplying the probabilities

of known and unknown query trigrams with the probability of hypotheses.

 The larger probability value decides the language of a query.

GIT REPOSITORY STRUCTURE

 Git is a popular open source version control system.

 The Git clone is a Git command for copying files from a remote repository.

 The Git clone command was reverse engineered to download source code.

 To experiment a local Git repository was configured with help of WebDav and

source code were pushed.

A local Git repository structure in Mac OSX

INTERNAL REPRESENTATION OF GIT
DIRECTORY STRUCTURE

 The general format of a Git tree object is represented by: tree ZN(A FNS)*

Z represents the size of the objects in byte

N indicates the null character

A denotes the UNIX access code

F represents the file name

S indicates 20 bytes long SHA hash

 The first two bytes of SHA hash represent the folder name and the

remaining 38 bytes indicate the file name.

GIT OBJECT FOLDER STRUCTURE

 Objects folder contains the actual Git blob and tree objects.

GIT CLONE USING cURL REQUESTS

 cURL request to each Git internal url provides the next Git url.

 The first Git url can be formed by appending the Git url with a fixed

component “info/refs?service=git-upload-pack”

 Git Blob objects contain the actual content of the file in a compressed

manner.

 Git tree objects contain the information about the organization of Git blob

objects.

 A cURL requests was made to get the compressed content from a Git

object. The content received was uncompressed to get the actual content.

GIT CLONNING EFFECTS IN YIOOP

 In Yioop, a fetcher process fetches the urls and downloads contents from

each url.

 These downloaded contents are processed based on their type. The fetcher

then builds an inverted index using these processed contents.

 When Yioop encounters a Git url, then the Git internal urls are fetched from

the parent Git url and contents are downloaded from these urls and

uncompressed.

 After all the Git urls are downloaded the control returns back to the normal

routines of fetching urls

GIT CLONE IMPLEMENTATION IN

YIOOP

LOGARITHMIC CHAR-GRAMMING

 Logarithmic char-gramming is a modification of a char-gramming

technique.

 A char-gramming technique is used to process text that contains a

contiguous sequence of characters.

 Character n-grams are the chunks of continuous text each of size n. For

example, if the text is “shining bell” and , n = 3 then 3-grams extracted

from the text are “shi ,hin, ini, nin, ing, ng_, g_b, _be, bel, ell”

 In the logarithmic char-gramming, a text is chunked into character n-grams

where n starts from 3 and keeps doubling until it exceed the length of the

text.

LOGARITHMIC CHAR-GRAMMING

 For the text “shining bell”, the value of n starts from 3 and doubles to 6 and

then doubles to 12. Here, the length of the text is 12 therefore, doubling

stops when the n reaches 12.

 The character n-grams produced for the text “shining bell” in the

logarithmic char-gramming technique are:

3-grams - “shi ,hin, ini, nin, ing, ng_, g_b, _be, bel, ell”

6-grams - “shinin, hining, ining_, ning_b, ing_be, ng_bel, g_bell”

12-grams - “shining_bell”

SUFFIX TREE

 A suffix tree is a tree-based data structure which contains all the suffixes of

a given string.

 Yioop has an implementation for the Ukkonen’s algorithm to build a suffix

tree.

 In Yioop, the newly introduced source code tokenization processes provide

terms needed to build a suffix trees for source code.

 Each term from the source code act as an alphabet while building the suffix

tree.

TOKENIZING JAVA AND PYTHON

SOURCE CODES

 Java and Python source code have definite structures and organization of

words. These characteristics of Java and Python source codes can be used

to tokenize the source code into lexical units.

 The lexical structure of the Java and Python programming languages are

different.

 In this approach the focus is to split the source code into tokens and to

build suffix trees using these tokens.

 Earlier, in Yioop there was no specific implementation to construct suffix

tree for source code.

JAVA TOKENS

 Token in Java can be categorized into

 Keywords

 Identifiers

 Separators

 Operators

 Comments

 Literals

 Literal is again categorized into integer literal, floating-point literal,

character literal, string literal, boolean literal and null literal.

PYTHON TOKENS

 Token in Python can be categorized into

 Identifiers

 Keywords

 Operators

 Delimiters

 Comments

 Literals

 Literal is again categorized into numeric literal, floating-point literal,

logical literal, string literal, byte literal and none type literal.

MAXIMAL AND CONDITIONALLY

MAXIMAL SUB-STRINGS

 For each source code file, Yioop builds a suffix tree from tokenized source

code and then finds the maximal and conditionally maximal sub-strings.

 A string is called a maximal string if it does not act as prefix of any other

string in the document and all the occurrences of a given string includes

other strings in the document.

 A string is called a conditionally maximal string if it acts as a prefix of

maximal string in a document and there is no other string in the document

which lies between them.

 Yioop, stores all the maximal sub-strings along with the pointers to their

respective conditionally maximal strings.

EXAMPLE

Document 𝑑1: 12341235

Maximal

Sub-Strings
1 2 3 4 5 123 12341235 23 2341235 341235 41235 1235 235

Conditional

ly Maximal

Sub-Strings

/ / / / / 1 123 2 23 3 4 1 2

Document 𝑑2: 123456

Maximal Sub-

Strings
1 2 3 4 5 6 123456 23456 3456 456 56

Conditionally

Maximal Sub-

Strings

/ / / / / / 1 2 3 4 6

EXAMPLE

 In the tables “/” indicated the root element.

 For query 𝑞1= 12 which never appears as a maximal string for any of the

above documents.

 Yioop looks for the cases where 1 occurs as a conditionally maximal sub-

string and is followed by 2.

 The documents, which satisfy this condition, are returned as the search

results.

SOURCE CODE QUERYING METHODS

 In Yioop, an inverted index is used to perform search operations.

 Naïve Bayes classifier is a probabilistic model, so at times it detects

language incorrectly.

 Incorrect language detection for search strings affects Yioop’s performance

negatively in terms of returning relevant results.

 To avoid this we have used control words.

 The control words are used to explicitly mention the language of the code

snippet or query string.

QUERYING METHOD FOR

LOGARITHMIC CHAR-GRAMMING

 The querying technique in the logarithmic char-gramming approach finds

two largest char-grams from the query string.

𝑙𝑒𝑛𝑔𝑡ℎ1 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝑢𝑒𝑟𝑦)

𝑘1 = log
𝑙𝑒𝑛𝑔𝑡ℎ1

3

𝑋 = 3 × 2𝑘1

where 𝑋 indicates length of the segment of the query string from the beginning

𝑙𝑒𝑛𝑔𝑡ℎ2 = 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑋

𝑘2 = log
𝑙𝑒𝑛𝑔𝑡ℎ2

3

Y = 3 × 2𝑘2

where 𝑌 indicates length of the segment of the query string from the end

QUERYING METHOD FOR

LOGARITHMIC CHAR-GRAMMING

 Two largest char-grams from a given query string is found by splitting the

original query string into two sub-strings; one from beginning of the string

for length X and another from ending of the string for length Y.

 These two char-grams are searched over an inverted index to find a match.

 Source code files for which match is found are returned to a user as

relevant search results.

QUERYING METHOD FOR SUFFIX TREE

 In the suffix tree approach, the querying technique is exactly same as the

indexing technique.

 A query string is tokenized into tokens to build a suffix trees.

 Maximal and conditionally maximal substrings were calculated to return

the matching results.

COMPARING PERFORMANCE IN YIOOP

 The crawl performance statistics for the logarithmic char-gramming

approach of code search

 The crawl performance statistics for the suffix tree approach of code search

Number of files in

Git repository

Size of the

inverted index

Time taken to build inverted

index in HH:MM:SS

Memory

usage

Original

size of files

10 3.2 MB 00:00:51 515064424 193KB

100 11.1 MB 00:02:24 515065288 1.1MB

1000 57.6 MB 00:08:15 686648216 8.2MB

Number of files in

Git repository

Size of the

inverted index

Time taken to build inverted

index in HH:MM:SS

Memory

usage

Original

size of files

10 81.2 MB 00:06:55 1158373144 193KB

100 359.1 MB 00:25:50 1742086984 1.1MB

1000 1.75 GB 01:42:47 1868283592 8.2MB

COMPARING EFFECTIVENESS IN YIOOP

 Average values for different effectiveness measures

0.918

1
0.952

1

0.847
0.907 0.889

0.989

0

0.2

0.4

0.6

0.8

1

1.2

Average Recall Average

Precision

Average F-

Measure

Average Map

Score

Logarithmic char-gramming

Approach

Suffix tree Approach

SOURCE CODE SEARCHING

TECHNIQUES IN YIOOP

 On the basis of both performance and effectiveness of code search

techniques implemented in Yioop, we have decided that suffix tree

technique is a reasonable approach to search source code in Yioop.

 In terms of effectiveness, the logarithmic char-gramming technique

performs a little bit better than the suffix tree technique. However, in terms

of performance suffix tree technique performs much better than logarithmic

char-gramming technique.

 Therefore, suffix tree approach is selected as a result of trade-off between

performance and effectiveness.

CONCLUSION

 In this project a Java and Python source code search feature was

implemented in Yioop.

 Our technique of code search addresses the complexity of source code

search without deteriorating the performance of Yioop.

 It was decided to add the suffix tree implementation of code search to the

main Yioop branch.

 Yioop could easily support the addition of other programming languages.

 All an implementer needs to do is code a programming language specific

tokenizer and page processor in Yioop.

THANK YOU

